

Measurement of the W and Top Masses in CDF

Anyes Taffard
On Behalf Of The CDF
Collaboration

SUSY06 - UCIrvine June 12 - 17 2006

What W & top masses got to do with SUSY?

Top & W masses are fundamental parameters of the SM

Measured to 0.014% at $Q^2=m_{\tau}^2$

$$M_W^2 = \frac{\pi \alpha_{em}}{\sqrt{2G_F \sin^2 \theta_W (1 - \Delta r)}}$$

Measured to 0.0009% Measured to 0.004% with muon lifetime at LFP

Radiative corrections dominated by top & Higgs (0.67% correction)

- Consistency check of SM parameters
- Precision measurements of M_{top} & M_W allow prediction of M_{Higgs}
- Constraint on M_{Higgs} can point to physics BSM
- Constraint on SUSY models

Tevatron & CDF

Recorded ~1.3 fb⁻¹ Peak Luminosity ~1.8E32 cm⁻²s⁻¹

CDF: Multi-purpose detector: Excellent tracker w/Si Calorimeters Muon chambers

Goal in TDR with 2fb-1

$$\delta M_{top} = 3GeV/c^2$$

 $\delta M_{W} = 40MeV/c^2$

W Transverse Mass

Measurement of the W mass is done by fitting the Jacobian edge of the W transverse mass:

$$M_{T} = \sqrt{2p_{T}^{\prime}p_{T}^{\prime}\left(1-\cos\phi_{\prime\prime}\right)}$$

Calibrate lepton $p_T \sim 0.01\%$. Bulk of mass information

proton beam

p_T^v inferred from measured E imbalance

Dominant uncertainty on $p_{T^{\vee}}$ come from hadrons recoiling against W

W production model:

- ·Rapidity (PDF's)
- •p_⊤ (QCD radiation)

Use Z decays to model boson p_T distribution, detector response to hadronic recoil energy

neutrino

antiproton beam

muon

Muon Momentum Calibration

Set momentum scale using J/ψ (Y) $\to \mu^+\mu^-$. Checked using $Z\to \mu^+\mu^-$

After corrections for energy loss in material, scale dependence on p_T is small \rightarrow reliably extrapolate to W/Z scale.

Y mass constrains tracker nonlinearity and test prompt track fit

Momentum scale determined to 3 parts per 10,000

 $\delta_{M_W} \sim 15 \ (scale) + 20 \ (alignent) = 25 MeV$

Electron Energy Calibration

- Use calibrated track to set calorimeter electromagnetic scale
 - E/p peak in $W^{\pm} \rightarrow e^{\pm}v$ events determines energy scale.

Fit scale in peak region

Measure calorimeter non-linearity using E/p distribution in bin of E_{T}

 $\delta_{\text{M...}} \sim 35 \text{ (stat)} + 55 \text{ (material)} + 25 \text{ (non-lin)} = 70 \text{MeV}$

Hadronic Recoil Model

Parametrize hadronic response

$$R = \frac{U_{meas}}{U_{true}}$$

- Resolution model combines terms from
 - Underlying event: $\delta_{M_{W}} = 37 MeV$
 - Independent of recoil but luminosity dependent
 - Resolution model tuned on min-bias events
 - Jet resolution $\delta_{M_W} = 20 MeV$
 - Accounts for resolution p_T(Z) dependence

 U_{true} given by $P_T(Z)$ $\delta_{M_W} = 20 \text{MeV}$

Tuned parameters using $Z\rightarrow \mu^{+}\mu^{-}$

Width of U distribution projected along angular bisector of leptons vs $P_{\tau}(Z)$

 $\delta_{_{M_{_{\scriptscriptstyle W}}}} \sim 50 MeV$

Resolution as a

function $\sqrt{p_{\tau}(Z)}$

W Production & Decay Model

W/Z production: $\delta_{M_W} = 15 MeV$

$$\delta_{_{M_{_{\scriptscriptstyle{W}}}}}=15MeV$$

- \blacksquare 2 ingredients: W p_T, fractional momenta of u & d quarks inside the proton (determine p_Z^W , which affects M_T)
- Embodied in PDF's (CTEQ & MRST)
- QCD corrections to W/Z production: $\delta_{M_W} = 13 MeV$

$$\delta_{M_W} = 13 MeV$$

- Model boson p_T using event generator (RESBOS) with NLL calculation and non-pertubative parameters constraint with Run I Z p_T data.
- QED corrections to W/Z decay: $\delta_{M_W} = 15 20 MeV$

$$\delta_{_{\mathcal{M}_{_{\scriptscriptstyle{W}}}}}=15-20 \textit{MeV}$$

 Simulate radiation of final state photon according to energy and spatial distribution from NLO event generator (WGRAD)

~ 27 MeV

W Mass Fit & Systematics

Fits blinded with additive offset

Good χ^2 for fit

Run Ib:80 pb⁻¹ (\sqrt{s} =1.8TeV) Run II: 200 pb⁻¹ (\sqrt{s} =1.96TeV)

Systematics	Electrons (Run 1b)	Muons (Run 1b)	Common (Run 1b)
Lepton Energy, Scale and Resolution	70 (80)	30 (87)	25
Recoil Scale and Resolution	50 (37)	50 (35)	50
Backgrounds	20 (5)	20 (25)	-
Production and Decay Model	30 (30)	30 (30)	25 (16)
Statistics	45 (65)	50 (100)	-
Total	105 (110)	85 (140)	60 (16)

Total Uncertainty 76 MeV (cf Run 1b 79 MeV)

Top Pair Production & Decay

At Tevatron, top is mainly produced in pair via strong interaction

In SM, top decays via the electroweak interaction BR($t\rightarrow Wb$)~100%

Challenges I: Combinatorics

Dilepton

2

Lepton+jets

12 6(1btag) 2 (2btag)

All-hadronic

360 90

- •2 undetected v: underconstraint (kinematically complicated to solve M_{top})
- •S:B=2:1; 20:1 ≥1 b-tag

- ·1 undetected v: over-constraint
- •S:B=1:4 (11:1 = 2 b-tag)
- •Golden channel: Most precise M_{top} measurement
- ·No v: over-constraint
- •S:B=1:8 =1 b-tag

3 constraints: Two M_W =80.4 GeV/ c^2 ; M_t = M_{tbar}

#Combi

w/b

b-tagging

Increases % of right combination & improves resolution

Challenges II: Jet Energy Scale

Jet Energy Scale:

- Determine E of q produced in the hard scatter
- ■Use MC & data to derive the E scale

Jet Energy Scale Uncertainty:

■Difference between data & MC

$\left(\begin{array}{c} \mathbf{q} \\ \overline{\mathbf{q}} \end{array}\right)$

b

New: In-situ jet energy calibration:

- \cdot Constrain the invariant mass of the non b-tagged jets to be $M_{\rm W}$
- •Use $W\rightarrow jj$ to measure the JES uncertainty
- Scales directly with statistics

Most precise measurements of M_{top} use this technique

M_{top} in Dilepton: Matrix Element method

- Each event gets assign a probability as a function of the top mass
 - Integrate over quantities not directly measured (v, E_a) using the LO M.E.
 - Assumes lepton and jet angles to be perfectly measured and jets are b's
- Likelihood is a linear combination of the probabilities for signal and background

Source (750 pb ⁻¹)	Expecteed Events	
DY,WW+jets,fakes	15.7±3.4	
EW(WZ,WW,ZZ)	3.6±0.7	
Total Backgrounds	19.4±3.4	
tt (6.1 pb)	36.1±1.2	
Data	64	

$$M_{top} = 164.5 \pm 4.5 \text{ (stat.)} \pm 2.6 \text{ (JES)} \pm 1.7 \text{ (sys.)} \text{ GeV/c}^2$$

M_{top} in l+jets: Template method

- Select reconstructed M_{top} from assignment yielding to lowest χ^2
- Use templates of top signal at different mass and background
- Reconstructed M_{top} & M_{jj} (from data) are compared to true M_{top} templates and ΔJES (jet energy uncertainty shift) using an unbinned likelihood

	<u> </u>			
Source (680 pb ⁻¹)	2 b tags	1 b tag (T)	1 b tag (L)	0 b tag
Expected S:B	~11:1	~4:1	~1:1	~0.6:1
Expected total (sigma _{tt} =6.1 pb)	~47	~104	~64	No apriori estimate
Data	57	120	75	108

40% improvement on JES using insitu calibration

 $M_{top} = 173.4 \pm 2.5 (stat. + JES) \pm 1.3 (sys.) GeV/c^2$

M_{top} l+jets: Average Decay Length method

- B hadron decay length $(L_{xy}) \propto b$ -jet boost $\propto M_{top}$ (PRD 71, 05029)
- Relies on tracking, no JES & uncorrelated with other measurements

(695 pb ⁻¹)	Expecteed Events	
Total Backgrounds	111.6±12.5	
Data	375	

 $M_{top} = 183.9^{+15.7}_{-13.9} (stat.) \pm 5.6 (sys.) GeV/c^{2}$

M_{top} in all-hadronic: Ideogram method

Kinematic fitter (χ^2) to fit 2 M_{top}

2D likelihood (mass, purity)

Use χ^2 & b-jet information to determine weight

$$L(M_{top}, P_s) = \sum_{i=1}^{90} w_i \left[P_s Signal + \left(1 - P_s \right) Bkg \right]$$

$$Signal\left(m_{i}^{1}, m_{i}^{2}, \sigma_{i}^{1}, \sigma_{i}^{2}, M_{top}\right) = p_{match} S_{match} + \left(1 - p_{match}\right) S_{comb}$$

Convolution Breit-Wigner and Gaussian resolution functions

Combinatorial background from MC

 $M_{top} = 177.1 \pm 4.9 (stat.) \pm 4.3 (JES.) \pm (1.9.) GeV/c^{2}$

Combining M_{top} Results

Combine to improve precision

Are the channel consistent?

 $M_{top}(dilepton) = 164.8\pm4.8 \ GeV/c^2 \ M_{top}(l+jets) = 173.5\pm2.8 \ GeV/c^2 \ M_{top}(all-hadronic) = 178.7\pm5.5 \ GeV/c^2$

Any systematic shift?

- Missing systematics?
- Bias due to new physics?

```
Comparison of M_{top} in Different Final States (CDF-II Preliminary, April 2006)

\Delta M (All-J-L+Jt) \\
\chi^2 = 1.0/1 (32\%)
\Delta M (All-J-Dil) \\
\chi^2 = 4.6/1 (3\%)
\Delta M (L+Jt-Dil) \\
\chi^2 = 3.3/1 (7\%)
\Delta M_{top} | (GeV/c^2)
```

Implication For Higgs & SUSY

 $\frac{Tevatron \ Average:}{M_{top}} = 172.5 \pm 2.3 GeV/c^2 (1.3\%)$

Precision EWK fit assuming SM:

$$M_{H} = 89^{+42}_{-30} \text{ GeV/c}^{2}$$

$$M_{H} < 175 \text{ GeV/c}^{2} @ 95\% \text{C.L.}$$

Or (including LEP-2 M_H >114.4 GeV/c² @95C.L.)

$$M_{_{H}} < 207 \text{ GeV/}c^2@95\%C.L.$$

Favors "heavy" SUSY over SM or light SUSY

$$M_{\mu}^{MSSM} < 140 \text{ GeV/c}^2$$

Summary & Prospects

W Mass

- Run I combined W mass uncertainty 59 MeV (42 MeV LEP)
- Run II analysis in advanced stage. Uncertainty already lower than Run I.
- Expectation with 2 fb⁻¹: 40 MeV/experiment, ~30MeV combined

Top Mass

- Achieved 1.3% precision with ~0.7fb⁻¹ (±2.3GeV/c²)
 - TDR Tevatron goal with 2fb⁻¹ was ±3 GeV/c²
- Expectation with full Run II dataset
- $< 1.5 GeV/c^2$

With more precision:

Would the SM continue to hold? Where will SUSY fit?

Precision Electroweak Measurements & Electroweak Radiative Corrections

- Large number of measurements from LEP, SLC and Tevatron
 - W mass/width (Tevatron, LEP-2)
 - Top quark mass (Tevatron)
 - Z-pole measurements (LEP, SLD)
 - Z lineshape parameters
 - Polarized leptonic asymmetries
 - Heavy flavor asymmetries and branching fractions
 - Hadronic charge asymmetry
- In the SM, each observable can be calculated/fit in terms of
 - $\Delta\alpha_{had}$, $\alpha_s(M_Z)$, M_Z , M_W , $\sin^2\theta_W$, M_{top} , M_{higgs} , etc...
 - Higgs & top enter as ~1% radiative corrections
 - LEP Electroweak Working Group
 - ZFITTER, TOPAZO

W/Z event signature

 $M_Z = 91.1876 \pm 0.0021 \text{ GeV (LEP)}$

 $M_{lv} = ?$ \leftarrow Can't measure p_Z of v

$$M_T = \sqrt{2(E_T^l E_T^{miss} [1 - \cos(\Delta \phi^{l-miss})])}$$

$$M_W = 80.425 \pm 0.034 \text{ GeV}$$

W Mass Hadronic Recoil

- Take care of energy in lepton calorimeter towers from underlying event/recoil
 - Look at towers adjacent (in ϕ) to e/μ
- Exploit similar production model of Z events to create ad-hoc model for recoil W events that depends on luminosity

W Mass: Recoil model

- Take model from fits to Z and min-bias and compare to W events
 - Look at component of U along electron and muon direction: U₁₁

W Mass: Backgrounds

- Z events where one lepton escape detection
- $W^{\pm} \rightarrow \tau^{\pm} \nu$; $\tau^{\pm} \rightarrow e(\mu) \nu \nu$

- Estimated from MC
- Other backgrounds are estimated from data by loosening cuts and extrapolation

Zbbar: b-specific jet E scale

- Challenge 1: Find the events in huge QCD background
 - Use 2 displaced track trigger (SVT).
 After b-tagging: ~90% bbar
 - Select 2 back to back jets (Et>20 GeV, $|\eta|<1.5$) & no other jet with Et>10GeV
- Challenge 2: Lowest possible cuts on jet
 Et to obtain a signal far from dijet mass
 turn-on
 - Without introducing biases & sculpting effects at low dijet masses
- Challenge 3: Obtain reliable dijet mass background shape to fit the data
 - Background shape taken from tagged events in control region.
 - Small fluctuation in background shape can result in large systematic effects in measuring b-jet Energy SF.

M_{top} in Dilepton channel

- Reconstructing Mtop from dilepton events represent a particular challenge:
 - 2 v from W undetected, only 1 Met measurement: decay assumptions are insufficient to constraint the event
- For each event calculate differential cross-section:

$$P_{S}\left(\mathbf{x} \middle| \mathbf{M}_{t}\right) = \frac{1}{\sigma(\mathbf{M}_{t})} \int d\Phi_{6} \left| \mathcal{M}_{tt} \left(\mathbf{q}_{i}, \mathbf{p}_{i}; \mathbf{M}_{t}\right) \right|^{2} \times \prod_{j \neq t s} \mathcal{W}\left(\mathbf{p}_{i}, \mathbf{j}_{i}\right) f_{PDF}\left(\mathbf{q}_{1}\right) f_{PDF}\left(\mathbf{q}_{2}\right)$$

$$\begin{array}{c} \text{Phase space} \\ \text{integral over} \\ \text{unknow quantities} \end{array}$$

$$\begin{array}{c} \text{LO Matrix} \\ \text{element} \end{array}$$

$$\begin{array}{c} \text{Transfer} \\ \text{functions} \end{array}$$

Only partial information available:

- Fix measured quantities
- Integrate over unknown parton quantities consistent with ttbar production and measured event

qi: 4-momentum of initial partons

pi: 4-momentum of final partons

x: measured event variables

M_{top} in Dilepton channel

Weighted sum of background and signal probabilities

$$P(x|M_t) = P_s(x|M_t)p_s + P_{bg1}(x)p_{bg1} + P_{bg2}(x)p_{bg2}$$

Test performance with P.E in MC for generated top masses

Response $\langle M_{\text{meas}} \rangle$ is linear.

Incomplete modeling of the background contribution

lead to slope (small bias), which is corrected.

$$Pull = \frac{M_{meas} - M_{true}}{\sigma_{meas}}$$

Examining pull width reveal that statistical uncertainty is underestimated.

Due to simplifying assumptions (eg jet from radiation rather than b quarks).

Rescale error by factor 1.49

